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The dynamic behavior of a spin-I lsing system with arbitrary bilinear and 
biquadratic pair interactions is studied by using the path probability method, 
and approaches of the system toward the stable or metastable equilibrium states 
according to the ratio of interaction parameters and rate constants are presen- 
ted. In particular, we investigate the relaxation of the order parameters for tem- 
peratures less than, equal to, and greater than the second-order and first-order 
phase transitions. From this investigation, the "flatness" property of metastable 
states is seen explicitly. We also show how a system freezes in a metastable state 
as well as how it escapes from one metastable state to the other. 

KEY WORDS: Spin-I lsing system; path probability method; metastable 
states; relaxation curves. 

1. I N T R O D U C T I O N  

The spin-1 Ising model (also known as the Blume-Emery-Griffiths model) 
has served has a paradigm for a large number of physically important 
phenomena. The first studied ~1) in the context of superfludity and phase 
separation in He 3 -  He 4 mixtures. Then the model has been extented to 
study condensation and solidification of a simple fluid as well as binary 
fluids, ~2) tricritical points in binary and tenary fluids, (3) microemulsions, ~4) 
semiconductor alloys, (5) electronic conduction models, t6) magnetic mate- 
rials, (7) the re-entrant phenomenon in phase diagrams, (s) critical behavior 
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and multicritical phase diagrams, t9-~2) study of metastable and unstable 
states, t13-~5) intermetallic alloys, t~6) The above works were done by the well 
known methods in the equilibrium statistical physics. 

While the statistics of the spin-1 Ising systems have been studied 
extensively, the dynamics of the spin-1 Ising systems have not been as 
thorougly explored. An early attemps to study dynamics of one-dimen- 
sional spin-1 Ising system was made by Obokata t~7) who used the spin-1 
Bethe method and subsequently extented it into a time-dependent model. 
Tanaka and Takahashi, (ts) and also Batten and Lemberg, ttg) studied 
dynamics of the spin-1 Ising system in the molecular field approximation 
and obtained the relaxation curves of order parameters. Saito and Miiller- 
Krumbhaar t2~ investigated the kinetics of a spin-1 antiferromagnetic Ising 
model using the time-dependent Ginzburg-Landau theory. Achiam t2~) used 
the real space, renormalizasyon-group approach to study the critical relaxa- 
tion of the one-dimensional spin-1 Ising model. Keskin and Meijer t22-23) 
and Keskin et  aL (24) have also studied a number of nonequilibrium 
behavior, especially the role of the unstable states in phase diagrams, of a 
spin-1 Ising system via the path probability method of Kikuchi. t25) 
Recently, Keskin and Meijer t26) studied the time-dependent one-dimen- 
sional spin-1 Ising system by means of the modified version of Glauber's 
one-dimensional spin relaxation model. 

In this paper we give a treatment of the dynamics of a spin-1 Ising 
model with arbitrary bilinear and biquadratic pair interactions using the 
path probability method t25) and study approaches of the system toward the 
stable or metastable equilibrium states according to the ratio of two inter- 
action parameters and rate constants. Particularly we investigate the 
relaxation of the order parameters for temperatures less than, equal to and 
greater than the second-order and first-order phase transitions. From this 
investigation, the "flatness" property of the metastable states is seen 
explicitly. We also examine how the system relaxes in metastable states 
hence becomes frozen-in in the nonequilibrium states, or escapes to other 
metastable state. 

The structure of this paper is as follows: In sec. 2 the model and the 
static properties are presented briefly. Sec. 3 contains the derivation of the 
dynamic equations and their solutions. Finally the discussion of the results 
and summary are given in the last section. 

_ ~ .  

2. THE MODEL AND THE STATIC PROPERTIES 

The spin-1 Ising system is a three-state and two-order parameter 
system. The average value of each of the spin state will be indicated X~, X2 
and X3 which are also called the state or spin variables. X~ is the fraction 
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of spins value + 1, X2 is the fraction of spins that have the value 0, and X3 
is the fraction of spins that have the value - 1, and X~ obeys the normaliza- 
tion relation. Two order parameters are introduced as follows: (1) the 
average magnetization ( S ) ,  (2) the quadrupole moment Q which is a 
linear function of the average squared magnetization ( $ 2 ) ,  written as 

Q = 3 ( S  z ) - 2  (1) 

The order parameters can be expressed in terms of the internal variables 
are given by 

S = ( S )  = X~ - ,7(3, Q = ( Q )  = x~ - 2xz + ,7(3 (2) 

We consider the spin-1 Ising system where spins interact with each 
other by the following Hamiltonian 

H = - ~ l ( J g k S l - ~ K Q k Q t )  ( 3 )  
< k/> 

where Sk = + 1, 0 , -  1 at each lattice site k, Qk is a quadrupole operator 
defined by Eq. (1), and ( k l )  indicates summation over all pairs of nearest- 
neighbor sites. J is the bilinear exchange interaction and K is the 
biquadratic exchange interaction. 

Using the lowest approximation of the cluster variation method, t27) 
the free energy F can be found as 

- - ~ = ~ J S Z + ~ K Q Z - k s T  ~ X i ( I n X ~ - I ) + 2  1 - Z  X, 
i=1  i=1 

(4) 

where 2 is introduced to maintain the normalization condition, N is the 
number of lattice points, ks is the Boltzmann factor and T is the absolute 
temperature. 

The minimization of Eq. (4) with respect to Xi and using Eq. (2), gives 
the set of self-consistent equations 

S ~  

a ~ 

2 Sinh(0~KS/ks T) 
exp( - 3KQ/kB T) + 2 Cosh(o~KS/ks T) 

Cosh(o~KS/ks T) - exp( - 3KQ/ks T) 
Cosh(o~KS/kn T) + (1/2) exp( - 3KQ/ks T) 

(5) 



1 0 3 8  K e s k i n  a n d  E r d e m  

where 0c = J/K is called the ratio of the coupling constants or the relative 
energy barrier. 

These two nonlinear algebraic equations are solved by using the 
Newton-Raphson  method and thermal variations of S and Q for several 
values of a are plotted in Fig. 1. Since the solution of these equations and 
the figure are discussed in Refs. 13, 24 extensively, we shall only give a brief 
summary here. In the figure, subscript 1 indicates the stable solutions 
(drawn lines), 2 the metastable solutions (dashed-dotted lines) and 3 the 
unstable solutions (dashed lines). This classification is done by comparing 
the free energy values of these solutions and as well as investigating to the 
free energy surfaces. The stable states correspond to the lowest minimum, 
the metastable states to the secondary or local minimum and the unstable 
states correspond to the saddle point or the peak in the free energy sur- 
faces. T~, T,, are the lower and upper limit of stability temperature, respec- 
tively. T,. is the first order phase transition temperature. It should be also 
mentioned that for 0~>6 a second order phase transition exists, for 
3 ~ a < 6 a first order phase transition occurs and for 0c < 3 there is a first 
order transition in Q with Q < 0 and so S = 0. The system has a tricritical 
point for 0c = 6. These information are very important  for the studying of 
relaxation of order parameters. 
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Fig. 1. The order parameters S and Q as functions of reduced temperature, exhibiting a first- 
order phase transition. Subscript l indicates the stable states (drawn lines), 2 the metastable 
state (dashed-dotted lines) and 3 the unstable states (dashed lines) Tt and 7', are the lower 
and upper limit of stability temperatures, respectively, 7',1 ~ the quasicritical temperature and 
T,~ is the first order phase transition temperature. Heavy lines are for0c-4.0 and thin lines 
for a - 2.0. 
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3. DERIVATION OF D Y N A M I C  EQUATIONS AND THEIR 
SOLUTIONS FAR FROM EQUILIBRIUM 

In this section we derive the dynamic or rate equations by using the 
path probability method (PPM). (25) In this method the rate of change of 
the state variables is written as 

dXj= ~ (Xu_ Xj/) (6) 
dt 

where ~(0 is the path probability rate for the system to go from state i to 
j. Detailed balancing requires that 

Xo. = Xj~ (7) 

Two options were introduced for X o. by Kikuchi (25) and he called recipes 
I and II. We use recipe II, namely 

Xo=koZ- 'X i exp  ( - O~X~) (8) 

where kg is the rate constants with kij= kji, Z is the partition function and 
E is the internal energy of the system, can be found working out Eq. (3) 
and given in Eq. (4). Z are calculated by using Eq. (3) and found 

3 

Z =  ~ e, ( i=  1, 2, 3) (9) 
i = l  

where 

el = e [(ss+ KQ)/kBT], e2 _ e[(--2KQ)/kBT], e3 = e[ ( - -JS  + KQ)/kBT] (lo) 

There are two rate constants in this model as follows: the first rate con- 
stants k~z=k23=k~ which is the insertion or removal of particles 
associated with the translational of particles through the lattice and the 
second rate constant k~3 = k2 is associated with reorientation of a molecule 
at a fixed site in the language of a lattice gas lSince the time interval of At 
is taken small enough, double process, the simultaneous insertion, removal 
or rotation of two particles do not take place, i.e. only single jumps are 
allowed. 

Using Eqs. (2), (6) and (8), the dynamic equations for the order 
parameters are found: 

822/89/5-6-10 



1040 Keskin and Erdem 

Z d S  
kl dt 

1 2 k +  1 
--(kel +e2 +ke3)--~(1--k)(el--e3) Q+ 

3 J 
(el-e3) 

Z dQ 
k~ dt 

= - ( e l  + e2 + e3) Q + (el - 2e2 + e3) 

where k = k2/kl, Z and ei are given Eqs. (9) and (10) respectively. 
In order to study the relaxation which occurs from states far from the 

equilibrium, it is necessary to solve these dynamic equations. We solve 
these dynamic equations by using the Runge-Kutta method. Relaxation 
curves of order parameters for several values of ~, k~ and ks T/K are plotted 
in Figs. 2-4. The discussion of these solutions will be given in the next 
section. 

4. DISCUSSION OF RESULTS AND S U M M A R Y  

Relaxation proceses which o~ccur in the spin-1 Ising system with 
arbitrary bilinear and biquadratic pair interactions are treated by using the 
PPM. Especially we study the relaxation of the order parameters to 
illustrate the "flatness" property of the metastable state. In order to study 
the relaxation which occurs far from equilibrium states, it is necessary to 
solve the dynamic equations, which are derived using the PPM. The solu- 
tions are given in Figs. 2-4 for several values of ~, ki and ks T/K. 

Figure 2 shows the relaxation of the order parameters for the tem- 
peratures less than and greater than the second order phase transition. 
From this case, the following results have been concluded: (1) If the tem- 
perature is less than the second order phase transition temperature, the 
system always relaxes to the stable states. Therefore relaxation processes 
are independent of the rate constants and initial values of order 
parameters, seen as heavy lines in Fig. 2. (2) If the initial conditions are 
chosen near the point to the total order, and the temperature is equal to 
and greater than the critical temperature, system relaxes into disordered 
states (thin lines in Fig. 2). It should be noticed that if the temperature is 
equal to the critical temperature, the system takes too long time to relax 
into disorder states. On the other hand, if the temperature is greater than 
the critical temperature, it takes short time to relax into disorder states. 
This behavior has been also observed in a time dependent one-dimensional 
spin-l/2 Ising system (2s) by using the Glauber model. (29) (3) Increasing 
value of the rotational rate constant, k 2, leads to a speed-up of the whole 
relaxation process. The reason for choosing k 2 > k I is that most systems 
have a shorter relaxation time for a rotation than for a transition. 
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Fig. 2. Relaxation curves of the order parameters S and Q for two different sets of values 
of the rate constants: k , = k 2 = l  {solid) and k , - 1  and k2=10 (dashed), ~=7.5 
(ksTc/K= 5.0). Subscript i indicates the initial values. Heavy lines are for k sT/K=4.5, 
Si=0.999 and Qi=0.999 and thin lines for ksT/K= 10, Si=0.999 and Qi=0.999. 

Figure 3 illustrates the relaxation of the order parameters in which the 
first order phase transition takes place. In this case, the behavior of the 
relaxation of order parameters is found similar to the Fig. 2 for the tem- 
perature smaller than, equal to and greater than the first order phase trans- 
ition temperature. However, if the temperature is between T, and Tt, the 
upper and lower limit of stability temperature, the relaxation processes are 
different. For example, if ~ = 4.0 and ks T/K = 2.695 and initial values of S 
are greater than their unstable solutions $3 and initial values of Q are near 
Q3, the system always relaxes into stable states, e.g. seen in Fig. 3a (heavy 
lines). Nevertheless, if initial value of Q is greater than its unstable solu- 
tions Q3 and S is smaller than its unstable solution $3, the system relaxes 
into the stable states for k~ = 1 and k2--- 10, but for k l ---k2 = 1 the system 
into a metastable state, namely S = 0.000 and Q = 0.000, hence frozen-in in 
the metastable state, illustrated thin lines in Fig. 3a. Flat regions of the 
relaxation curves (S--0.000 and Q=0.000), do not correspond to the 
lowest minimum, are metastable states. Because one of the characterization 
of a metastable state is a "flatness" property of relaxation curves, t3~ In our 
previous works, we also showed that S = 0.000 and Q--0.000 state which 
is between T, and T], is a metastable state because this state corresponds 
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Fig. 3. Same as Fig. 2 but 0t = 4.0 and ks T/K = 2.695. Subscript i indicates the initial value, 
s the stable state and m the metastable state. (a) Heavy lines are for S i=0 .3  and Qi=0.001 
(Ss = 0.550 and Qs = 0.451 ) and thin lines for S~ = 0.0001 and Qi=  0.999 (Ss= 0.550, Qs=  0.451, 
S,,, = 0.000 and Q,, = 0.000). (b) S~= 0.999 and Qi=0.001 (S, =0.550 and Q, =0.451 ). 
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to secondary or local minimum in the contour map of the free energy sur- 
faces.(13, 14) This fact was also illustrated by using the flow diagrams which 
show the solution of dynamic equations in two dimensional phase space of 
S and Q.(24) On the other hand, for the initial value of S is greater than its 
unstable solution $3 and Q is greater than Qa the system always relaxes 
into stable state, as seen in Fig. 3b. Moreover, in this case since we have 
also unstable states, for a number of cases the system tries to go to unstable 
state via one of the order parameters, but after sometime the relaxation 
curve makes a sharp turn (a U-turn so to speak or inverse U-turn, seen in 
the figures) and relaxes to either stable states (in most cases) or to 
metastable states (in a few cases). This called "overshooting" phenomenon 
which is often discussed in glass transition and also has been observed in 
a number of other systems. ~3~'32) It should be noticed that if both initial 
values of S and Q are smaller than their unstable solutions, the system 
always relaxes into the metastable state. 

Figure 4 is obtained for ~ = 2 and it shows the most interesting relaxa- 
tion processes. In this case there is a first order phase transition in Q with 
Q < 0  a:nd so S =0,  and the system has more than one metastable and 
unstable states (see also thin lines in Fig. 1). If the initial values of S and 
Q are chosen near one of their metastable states, the system relaxes into 
one of the metastable states (namely, Sin= 0.856 and Qm = 0.924), seen as 
heavy lines in Fig. 4a, otherwise into the stable state (Sin=0.000 and 
Q,,, = -  1.940), illustrated thin lines in Fig. 4a. On the other hand, if the 
initial value of S is near one of its metastable states, but Q is far from one 
of the metastable states the system relaxes into one of the metastable states 
(namely, Sin=--0.856 and Qm=0.924) for k~ = k 2 =  1, but it relaxes into 
the stable state for k t = l  and k2=10,  heavy lines in Fig. 4b. It is 
worthwhile to mention that the "overshooting" phenomenon is also seen in 
this case. 

The other interesting result which we find and illustrate in Fig. 4b with 
thin lines. In the figure there are two fiat regions on the relaxation curves. 
These fiat regions are the metastable state, because they do not correspond 
to the lowest free energy value. We obtain this figure, for initial values of 
S and Q are equal to zero, ksT/K= 1.55, k l = k 2 =  1 and also k~= 1, 
k2-- 10. In this case, the system first relaxes into one of the metastable state 
where S~,,,=0.000 and Q1,,,=0.580 which corresponds the first fiat region 
on relaxation curves. Then after some time the system escapes from it and 
relaxes to the other metastable state where $2,, =0.587 and Q2m =0.754 
which corresponds to the second fiat region on the relaxation curves. 
Hence the system frozen-in in this second metastable state. These fiat 
regions do not correspond to the lowest minimum of free energy, therefore 
they are metastable states. We have also shown that these states are 
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Fig. 4. Same as Fig. 3 but 0{ = 2.0. (a) Heavy lines are for k aT/K= 1.25, S`.= 0.999 and 
Q`.-0.01 (Sm-0.856 and Q, , -0 .924)  and thin lines for kaT/K= 1.25, S ` .= -0 .999  and 
Q`.= -0.999 (S, = 0.000 and (2, = -1.940). (b) Heavy lines are for k a T/K- 1.25, S`.- -0.999 
and (2, = -0 .25 (S, - 0.000, (2, = - 1.940 and S,, - -0.856,  Q,,, = 0.924) and thin lines for 
kBT/K=l.55, S`.=O.O00 and Qi=0.000 (Sl , ,=0.000,  Q, , ,=0.580 and S ~ = 0 . 5 8 7 ,  
Q2,,=0.857. Subscript 1 m indicates the first metastable state, 2m the second metastable 
state). 
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metastable states by using the different methods such as the contour map 
of free energy surfaces t~3) and the flow diagrams which illustrate the solu- 
tion of dynamic equations in two dimensional phase space of S and Q.t24) 
Finally, we should also mention that this figure also helps us to see how 
a system escapes from one metastable state to the ot~er. The phenomenon 
of escaping from one metastable to the other is found in the review paper 
of Hanggi et  al. (33) 
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